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Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper
�Traulsen et al., Phys. Rev. Lett. 93, 028701 �2004��, we have demonstrated this effect based on a replicator
dynamics model which is subject to external noise. Here, we utilize recent advances on finite population
dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic
gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the
population size and the intensity of selection, which measures the balance between the deterministic and the
stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate
microscopic update process, even if learning rates are constant.
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I. INTRODUCTION

Evolutionary biology considers the dynamics in popula-
tions in which the potential to produce offspring differs
among the individuals. Individuals with higher fitness pro-
duce more offspring and spread in the population. In the
simplest case, fitness is a fixed number and the fittest type
spreads fastest. Evolutionary game theory describes
frequency-dependent selection, i.e., the fitness depends on
the types and frequencies of others in the population �1–4�.
Traditionally, such systems are described by deterministic
replicator equations �5–7�, which corresponds to a mean field
approximation in physics. Using techniques from statistical
physics, a connection between replicator equations and re-
lated microscopic processes can be established �8–12�. Dif-
ferent microscopic dynamics lead to different forms of the
replicator equation in the limit of infinite populations. How-
ever, usually this affects time scales and does not alter the
stability of fixed points and the qualitative dynamics. In
structured populations, the microscopic update rule that de-
termines how individual players switch strategies can signifi-
cantly change the macroscopic dynamics �13–15�. The field
of evolutionary game theory has recently tackled the effects
of noise in great detail; see �4,16� for recent reviews. Only if
such stochastic effects are included can simple rules for the
evolution of cooperation on networks �17,18� or group struc-
tured populations be derived �19�. New phenomena arise in
coordination games under weak selection �20–22� or when
payoffs are stochastic �23�. In systems where the replicator
equation predicts cyclic behavior, extinction is certain in a
stochastic setting �24,25�.

Usually, evolutionary game theory addresses the dynam-
ics within a single population and describes how different
types spread in this population �13,17,20,26,27�. Bimatrix
games �or asymmetric conflicts� address situations in which
two different populations with different preferences interact,
which is the generic case in economics. In biology, the two
populations can be males and females or defenders and at-
tackers of a territory �1�. In social and economic systems,
one could think of employees and employers or shoppers and

sellers. This switching between economical and biological
thinking is typical for evolutionary game theory, which origi-
nated from the application of ideas from economics in biol-
ogy.

Usually, evolutionary game theory considers the competi-
tion between different individuals within a population �e.g.,
between timid and aggressive males�. But one can also com-
pare the average success of one population to the average
success of the second population. In these systems, small
changes in the details of the replicator dynamics can change
the qualitative dynamics and the stability of fixed points �1�.
In a previous paper, we have shown that one population that
changes its adaptation or learning rate according to its cur-
rent situation can in the long run outperform a population
with a constant learning rate in the presence of external ad-
ditive noise, even when learning faster alone is not enough
�28�.

Here, we investigate this “stochastic gain” effect in inter-
acting finite populations and show that even internal noise
that naturally arises from the finiteness of a population can
be exploited in this way. We start by showing that the effect
can be found in a finite population not subject to external
noise and demonstrate that our results are qualitatively ro-
bust with respect to the microscopic update mechanism. Sub-
sequently, we show examples that an adaptive learning rate
�which forms the basis of the “stochastic gain” in Ref. �28��
is not necessary at all if both populations employ different
microscopic update mechanisms. In this case, specific micro-
scopic update rules are more successful.

II. THE BASIC MODEL

A. Payoffs

To address the stochastic gain effect in finite populations,
we consider two interacting populations X and Y, both of
size N. Each individual can choose between two strategies 0
and 1. The payoff in the X population depends on the number
of different strategic types in the Y population and vice
versa. The payoffs for a single interaction can be written as
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Y0 Y1

X0

X1
�a00,b00 a01,b01

a10,b10 a11,b11
� . �1�

Thus, an X0 individual interacting with a Y0 individual ob-
tains the payoff a00 whereas its interaction partner obtains
b00. The average payoff �0

X of each of the X0 individuals
depends on the number of Y0 individuals, j, and on the num-
ber of Y1 individuals, N− j. It is given by �0

X=a00j /N
+a01�N− j� /N. Similarly, we have �1

X=a10j /N+a11�N− j� /N.
In the Y population, the payoffs depend on the number of X0
and X1 individuals, i and i=N− i, which leads to �0

Y

=b00i /N+b10�N− i� /N and �1
Y =b01i /N+b11�N− i� /N.

The payoffs now determine the probability that a new
strategy is adopted. Different ways to incorporate this strat-
egy dynamics are possible �21,29,30�.

B. Population dynamics

Here, we use a microscopic update mechanism based on
the pairwise comparison of individuals: One focal individual
is selected at random and compares its payoff to a randomly
selected role model from the same population. It adopts the
strategy of the role model with a probability proportional to
the payoff difference. Thus, the probabilities to change the
number of X0 individuals from i to i�1 are given by

TX
i→i�1 = �x�1

2
�

w

2

�0
X − �1

X

��max
� i

N

N − i

N
. �2�

Via the payoffs, these transition probabilities depend on
the number of different types of the Y population. The learn-
ing rate �x determines how likely it is to change a strategy in
the X population. For �x�1, it is very unlikely that an indi-
vidual switches the strategy. In the extreme case of �x=0, the
population does not evolve. For the maximum value �x=1,
evolution within the X population proceeds at the fastest rate.
The intensity of selection w controls how likely it is to adapt
to a better �or worse� strategy �10,20�. For w�1, selection is
weak and the probability to switch to a better strategy is only
slightly higher than the probability to switch to a worse strat-
egy. For w=1, the probability to adopt a better strategy
reaches one if the payoff difference �0

X−�1
X reaches the

maximum possible payoff difference ��max. With probabil-
ity TX

i→i=1−TX
i→i+1−TX

i→i−1, the number of X0 and X1 indi-
viduals remains constant. In an equivalent way, we obtain

TY
j→j�1 = �y�1

2
�

w

2

�0
Y − �1

Y

��max
� j

N

N − j

N
. �3�

The transition probabilities �2� and �3� define a birth-death
process in each of the two populations on the state space
�i , j�= �0,1 , . . . ,N�. The two processes are coupled. For large
populations, the dynamics of the system can be approxi-
mated by a Fokker-Planck equation with drift term a�i�
=Ti→i+1−Ti→i−1 and diffusion term b�i�
=	�Ti→i+1+Ti→i−1� /N �10�. Applying the Itô calculus
�31–33�, this description is equivalent to a stochastic differ-
ential equation for x
 i /N and y
 j /N,

ẋ =
�xw

��max
��0

X − �1
X�x�1 − x� +	�x

x�1 − x�
N

� ,

ẏ =
�yw

��max
��0

Y − �1
Y�y�1 − y� +	�y

y�1 − y�
N

� . �4�

Here, � is white Gaussian noise with variance 1. Since we
describe the coupled dynamics in two populations, we need
two replicator equations �34�.

With this specific microscopic update mechanism, we
now concentrate on a particular game for which the stochas-
tic gain effect is most striking. We consider the payoff matrix

Y0 Y1

X0

X1
�+ 1,− 1 − 1, + 1

− 1, + 1 + 1,− 1
� . �5�

This game is known as “matching pennies” �in economics�
or “battle of the sexes” �in biology�. A biological motivation
of this game can be found in �1,10,35�. The X population is
better off if it uses the same strategy as the Y population, i.e.,
an X0 player obtains the highest payoff when matched with a
Y0 player and an X1 player obtains the highest payoff when
matched with a Y1 player. Individuals from the Y population
obtain the highest payoff when paired with a different strat-
egy in the X population, i.e., Y0 with X1 and Y1 with X0. In
the limit N→�, the multiplicative noise term vanishes and
we obtain from Eq. �5� the usual replicator equation. In this
case, the quantity �x�1−x���y�y�1−y���x is a constant of mo-
tion �36�. The system cycles on closed trajectories around a
neutral fixed point at �x ,y�= �1 /2,1 /2�.

C. Dynamics close to the interior fixed point

Due to the symmetry of the game, both populations obtain
the same average payoff. The same holds under the influence
of external additive noise �28�. In the case of a finite popu-
lation, the microscopic update mechanism is a natural source
of internal noise. Considering the symmetry between Eqs.
�2� and �3�, both populations have the same average payoff
even in this case.

Following Cremer et al. �25�, we can derive a Fokker-
Planck equation and approximate the dynamics of the system
close to the neutral fixed. Starting from the deterministic part
of the replicator equations �5�, we can use the coordinate
transformation x̂=x− 1

2 and ŷ=y− 1
2 . Further, we assume that

�x=�y and set 	̂=w�x /��max=w�y /��max. Thus, we arrive
at

�tx̂ = − 	̂ŷ�4x̂2 − 1� ,

�tŷ = + 	̂x̂�4ŷ2 − 1� . �6�

The Fokker-Planck equation, which describes the time evo-
lution of the probability density P �where we dropped the
dependence on x̂, ŷ, and t� is in its general form given by
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�tP = − �
k

�kakP +
1

2�
k,l

�k�l
klP . �7�

In our case, the drift vector is a= ��tx̂ ,�tŷ�. The diffusion
matrix is diagonal with 
x̂x̂= � 1

4 − x̂2� /N, 
ŷŷ = � 1
4 − ŷ2� /N and


x̂ŷ =
ŷx̂=0.
Due to the symmetry of the problem we can introduce

polar coordinates x̂=r cos � and ŷ=r sin �, so the equations
read

�tr = − r3	̂ sin�4�� ,

�t� = 	̂�r2 − cos�4��r2 − 1� . �8�

Note that these two functions are invariant under rotation by
� /2. Close to r=0, where we can approximate the diffusion
term by 1 / �4N�, the Fokker-Planck equation becomes in po-
lar coordinates

�tP = 	̂r3 sin�4���rP + 	̂�1 − r2 + r2 cos�4�����P +
1

4N
�rP .

�9�

Here P= P�r ,� , t� and

�r =
1

r

�

�r
r

�

�r
+

1

r2

�2

��2

is the Lapacian in polar coordinates. We are interested in the
radial dependence only close to the interior fixed point, r
�1. Therefore, we average over the angular dependence by
replacing all angle-dependent terms by their mean value, for
example �sin 4�
=�0

2� sin 4� d�=0. Then the equation re-
duces to �tP= �1 /4N��rP. Since the constant P�r�= P0 is a
solution of this differential equation, one can expect that a
stationary solution will be constant close to the interior fixed
point at r=0. Because of the absorbing boundaries of the
process, we can at most expect quasistationary behavior until
the boundaries are reached. This is of particular interest if the
time until the boundaries are reached is large �25�.

It can be shown that the quantity H�x ,y�=−x�1−x�y�1
−y� is a constant of motion of the replicator equations of the
system, Eq. �5�. However, H�x ,y� is not constant for all up-
date mechanisms. In general, the change in H�x ,y� deter-
mines whether the system spirals towards the neutral fixed
point � 1

2 , 1
2 � or away from it. In such cases, H�x ,y� can often

be interpreted as a Lyapunov function which determines
whether the fixed point is asymptotically stable �25,28�. In
�37�, it has been shown that the average drift of the local-
update system away from the fixed point can be determined
by averaging over H�x ,y�. Thus, the change of H�x ,y� al-
lows us to infer if the stochastic system drifts away from the
fixed point or towards it. Only in the latter case can, a qua-
sistationary solution be obtained. Averaging over the area
around the fixed point in polar coordinates leads to

��H
 =
1

�r2

2

N2�
0

2�

d��
0

r

dr�r�H�1

2
− r� cos �,

1

2
− r� sin ��

=
1

N2�1

8
−

r2

4
+

r4

12
� � 0. �10�

Because this quantity is positive for finite N and small r, the
system will leave the vicinity of the interior fixed point after
a short time. This is different for the Moran process, as
shown in �25�. Both results are compatible with the picture
for N→�, where the adjusted replicator dynamics associated
with the Moran process predicts a stable fixed point and the
usual replicator dynamics associated with the local update
process discussed here predicts a neutrally stable fixed point.

III. ADAPTIVE LEARNING RATE

Usually, the learning rates �x and �y have the same fixed
value. Szolnoki and Szabó have analyzed a system in which
different players have different, but fixed values of � �38�.
Here, we assume that the rate with which a population adapts
to a new situation is different depending on the average suc-
cess of a population. If the overall success is unsatisfactory,
one is more likely to try something new.

We follow our previous work based on the replicator
equation �28� and introduce an adaptive learning rate �x for
the X population. This rate �x that increases above a base
value �0 when the average payoff difference to the Y popu-
lation is negative. It decreases below �0 when the payoff
difference is positive. In our case, the adaptive learning rate
is given by

�x = �0�1 − tanh�
x���� . �11�

Here, ��= ��X
− ��Y
 is the difference between the average
payoffs, which are defined by ��X
= ��0

Xi+�1
X�N− i�� /N and

��Y
= ��0
Y j+�1

Y�N− j�� /N. The parameter �0 is set to 1
2 , and


x determines how sensitive this change in the learning rate
is. If the X population has a larger average payoff than the Y
population, adaptation of strategies becomes slower. If the X
population has a smaller average payoff than the Y popula-
tion, adaptation of strategies becomes faster. Thus, we intro-
duce an adaptive learning rate that follows the “win stay–
lose shift” paradigm in the comparison between the two
populations.

A. Local update mechanism

Our system reduces to the one analyzed in �28� in the
limit of N→�, but then includes no noise term. Moreover,
the nature of the noise is very different. In �28�, the noise is
additive and arises from an external source. Here, the noise is
multiplicative and arises internally from the system. In Fig.
1, we demonstrate that for finite populations the stochastic
gain effect can still be found with the additional twist that
now internal noise is exploited. The noise intensity is con-
trolled by w: Small w implies that the system is close to
neutral selection where all individuals have the same fitness.
In this case, it is difficult to increase payoffs solely by chang-
ing the rate of adaption. Large w means that the system is
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very unlikely to leave the area close to the point �x ,y�
= �0.5,0.5� where both populations have the same payoff.
Thus, there exists an optimal w for which the payoff differ-
ence becomes highest. For N→�, the internal noise vanishes
and the effect is no longer present. We have started with a
random initial condition and simulated the system until one
strategy in one population has reached extinction.

Figure 1 shows the mean payoff difference averaged over
a large number of such runs. Figure 1�a� shows that the effect
becomes more pronounced with increasing 
 �for very large

, the effect becomes weaker again, see below for an expla-
nation�. Figure 1�b� shows that, with increasing N, the posi-
tion of the maximum changes to smaller intensity of selec-
tion. This is consistent with the fact that often the effective
selection pressure is given by Nw �20�. In addition, the size
of the maximum decreases.

Next, we show that for 
=
x�0 and 
y =0, the rotational
symmetry of the system is changed. By considering 
�1,
we can replace the hyperbolic tangent with its argument
�tanh 
�
�. We also set 	=w�0 /��max. In this case, Eq.
�8� becomes

�tr = − r3	 sin�4�� + 2r3
	�2r2 + 2r2 cos�2�� − 1�sin�2��2,

�t� = 	�− cos�4��r2 + r2 − 1� − 8r2
	 cos���

��4r2 cos���2 − 1�sin���3. �12�

The 
-independent terms are invariant under rotation by
� /2, whereas the 
-dependent terms are only invariant under
rotation by �. This results from the asymmetry of the sys-
tem, as the population with the adaptive learning rate leads to
a higher stationary density in the areas where it has a higher
payoff. In other words, 
�0 breaks the rotational symmetry
of the system. In principle, a Fokker-Planck equation for 

�0 can now be derived. However, neglecting the angular
dependence recovers the result for 
=0. The full solution of
the Fokker-Planck equation showing the effect of 
�0 can
only be done numerically.

B. Moran process

Next, we show that the stochastic gain effect in finite
populations does not depend on the details of the micro-
scopic update mechanism. A standard approach for game dy-
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FIG. 1. �Color online� Average payoff difference of a population
with an adaptive learning rate �x=1 /2− �1 /2�tanh�
x��� compared
to a population with a constant learning rate of �y =0.5 in the
matching pennies game using the local update rule �see text�. �a�
Payoff differences for a constant population size of N=100 and for
different 
. The average payoff difference is small if the intensity of
selection w is small otherwise the population with an adaptive
learning rate has a higher average payoff. The stochastic gain effect
becomes more pronounced with increasing 
 �averages over 2
�104 random initial conditions in the interior until the maximum
time T=105 or until the absorbing boundaries of the system are
reached�. �b� Payoff differences for three different population sizes
for fixed 
=1.0. The total payoff decreases with higher population
size N because the noise intensity decreases. In the limit of N→�
we obtain the equation for the stochastic replicator dynamic without
external noise. Thus the payoff difference converges to zero. Aver-
ages over 7000 random initial conditions until the absorbing bound-
aries are reached or until the maximum time T=N�103.
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FIG. 2. �Color online� Average payoff difference of a population
with an adaptive learning rate �x=1 /2− �1 /2�tanh�
x��� against a
population with a constant learning rate of �=0.5 in the matching
pennies game using the frequency-dependent Moran process in both
populations. The parameter values in �a� and �b� are identical to
those of Fig. 1, but in the Moran process shown here the maximum
intensity of selection is given by w=0.5. Qualitatively, the stochas-
tic gain effect does not depend on the details of the update mecha-
nism in finite populations: With 
 increasing from 
=0.0, the pay-
off advantage of the adaptive population increases. However, there
is an optimal 
 for which the stochastic gain effect is most pro-
nounced; see text. With increasing N, the system approaches a de-
terministic replicator system and the intrinsic noise vanishes. Thus,
increasing N leads to smaller payoff differences. Moreover, the
finite-size effect of a negative payoff difference for low intensity of
selection vanishes.
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namics in finite populations is the frequency-dependent Mo-
ran process �19,21,39,40�. In each of the two populations, the
following update process takes place.

One individual is selected for reproduction with a prob-
ability proportional to the fitness of the individual. We define
fitness f as a convex combination of a background fitness set
to 1 and the payoff, e.g., f0

X=1−w+w�0
X. Since our payoffs

vary between −1 and 1, the intensity of selection w has an
upper limit, w�0.5 to ensure that fitness is positive. The
selected individual produces identical offspring, which re-
places a randomly chosen individual. The transition prob-
abilities in the X population are thus given by

TX
i→i+1 =

�x

2

f0
Xi

f0
Xi + f1

X�N − i�
N − i

N
, �13�

TX
i→i−1 =

�x

2

f1
X�N − i�

f0
Xi + f1

X�N − i�
i

N
, �14�

where we have introduced a factor 1 /2 to make both consid-
ered processes identical for w→0. Similar equations hold for
the Y populations.

In the Moran process, strategies with higher fitness are
more likely to be selected for reproduction, whereas selec-
tion at death is the same for all strategies. Thus, the average
abundance of fitter strategies increases over time. The
frequency-dependent Moran process reduces to the adjusted
replicator dynamics in the limit N→� �10�. For the adjusted
replicator dynamics it is known that the game defined by the
payoff matrix Eq. �5� has an asymptotically stable fixed point
at �x ,y�= �0.5,0.5� �1�. Moreover, in finite populations the
probability density is centered around this stable fixed point
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FIG. 3. �Color online� Payoff distribution and stationary distribution for the Moran process in the strategy space spanned by the state
space for a constant population size of N=100, encoded by a color scale where bright colors indicate high values. �a� Average payoffs
��X
= ��0

Xi+�1
X�N− i�� /N of the adaptive populations �X� are shown. In the bottom left and top right areas �green, �� the payoffs of the

adaptive population �X� are positive, whereas in the bottom right and top left areas �red, �� the payoffs are negative. The adaptive population
can obtain a higher stationary probability density in the bottom left and top right areas, leading to the stochastic gain effect. �b� Stationary
distribution for 
=0.0, invariant under rotation by � /2 and approximately rotationally invariant close to the fixed point of the replicator
dynamics at �x ,y�= �0.5,0.5�. The population dynamics drives the system around this point. �c� With increasing 
=1.0 the system is driven
to the interior. Now the areas where the average payoff for the adaptive population is higher shows a larger stationary probability density. �d�
Same as in �c� but the stationary distribution for 
=10.0 is shown. Increasing 
 further leads to a smaller probability density in the areas
where the payoff difference is high and thus, the payoff difference decreases again for large 
 �for all panels, parameter values are
N=100, R=5�105 independent realizations, w=0.35, maximum number of time steps T=N�103�.
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for the Moran process, in contrast to the local update process
discussed above. Thus, it is not a priori clear that the sto-
chastic gain effect can be observed even in the frequency-
dependent Moran process. However, Fig. 2 shows that a vari-
able rate of adaptation also leads to an increased payoff in
this process.

To illustrate the effect further, we consider the probability
density for the different states of the system numerically.
Figure 3�b� shows that for 
x=0 this probability density is
symmetric in the state space �i , j�� ��0, . . . ,N� , �0, . . . ,N��
leading to a vanishing average payoff difference. With in-
creasing 
x, the time the system spends in states in which the
X population has the higher average payoff increases. How-
ever, if 
x becomes too large, then adaptation of the X popu-
lation is so fast that random fluctuations no longer take the
system to states in which the payoff difference is large, see
Fig. 3�a�. Thus, there exists an optimal 
x for which the
payoff difference becomes highest for any given w.

IV. COMPETITION OF UPDATE MECHANISMS

The choice of the adaptive learning rate in Eq. �11� not
only incorporates the state of the population, but requires
also information on the competing population. In reality,
such information might not be available and information ac-
cess is restricted to the own population. However, the exploi-
tation of internal �or external� noise is still possible if both
populations update their strategies by different learning
schemes.

So far, we have assumed that both populations use the
same update mechanism and that only the adaptive learning
in one population is different. However, one can also con-
sider two different update mechanisms in the two popula-
tions. This is motivated by the following observation �10�.
The local update mechanism leads to the standard replicator
dynamics ẋ=x��x− ��
� in the limit N→�. The frequency-
dependent Moran process leads to the adjusted replicator dy-
namics ẋ=x��x− ��
� / ��
 in this limit. The only difference
is that the right-hand side is divided by the average payoff.
However, this can be interpreted as a change in the learning
rate, as a large average payoff leads to slow dynamics and a
small average payoff to fast dynamics. Hence, a population
using the frequency dependent Moran process outperforms a
population using the local update mechanisms, without re-
quiring any knowledge about the difference between the two
populations; see Fig. 4. This result becomes more pro-
nounced for higher intensities of selection. However, in the
processes discussed here there is an upper limit in the inten-
sity of selection. To address this issue, one has to resort to
different microscopic update mechanisms �41�.

V. DISCUSSION

Here, we have demonstrated that the stochastic gain effect
discussed in �28� can also be found in finite populations. In
this case, the internal noise arising from the finiteness of the
population can be exploited. The intensity of this noise can
be controlled by the intensity of selection, which determines

how likely it is that individuals adopt better �or worse� strat-
egies.

An increased average payoff can be obtained from a dif-
ferent microscopic update mechanism in such situations. In
principle, this could lead to higher-level selection: If compe-
tition does not only occur within populations, but also be-
tween groups of individuals �19�, then groups using a more
successful update mechanism will perform better. In this
way, a more successful update mechanism might be selected
in the long run. But this result can also be interpreted as a
warning: In multiagent simulations, one should choose an
update mechanism carefully and be aware of the conse-
quences of this choice.

Modeling such systems with deterministic techniques
such as the replicator equations becomes relevant only when
noise has a small influence on the system, as, e.g., in large
populations or under strong selection. Recently, there has
been an increased interest in stochastic effects in evolution-
ary games. Perc and Marhl have shown that in spatial games
coherence resonance can be observed �42,43�. It has been
shown that noise can even enhance cooperation in many cir-
cumstances �44–46�. Internal as well as external noise has
been considered in these systems and it has been shown that
the nature of these disturbances can be very different �47,48�.

The stochastic gain effect in finite populations becomes
weaker with increasing population size, as the noise intensity
of the internal noise decreases. Moreover, there is an optimal
speed of adaption. Too slow adaptation cannot lead to an
exploitation of internal noise. For too strong adaptation, the
player with adaptive learning rate prevents the system from
reaching regions where his payoff is highest by trying to
exploit even small differences. The existence of the stochas-
tic gain effect without any adaptive learning rates ��x=�y
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FIG. 4. �Color online� Average payoff difference of a population
using the Moran process against a population using the local update
rule for two different sizes of population N. Both populations do not
change their learning rate ��0=0.5�. Independent of the intensity of
selection w the population using the Moran process obtains a higher
payoff. Thus, the stochastic gain effect can also be observed in the
absence of variable learning rates. The total payoff decreases with
higher population size N. In the limit of N→� both dynamics result
in the equation for the deterministic replicator dynamic, without
external noise thus the payoff difference tends to zero. Parameter
values are N=500,1000, T=N�103 maximum number of time
steps, and R=15 000 realizations.
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=0.5� is based on the application of different microscopic
update rules, which seems to be natural when two different
populations or players interact.

One way to model such interactions is the minority game,
which became a paradigm as a simplified market model
�49–52�. In this game, there is an odd number of players,
who choose between buying and selling. The group that is in
the minority wins, since they have a better position negoti-
ating the price. Players are usually modeled as heterogeneous
agents who have different ways to incorporate available in-
formation about the game and convert it into optimal actions
for the future. Thus, memory and the differences between
agents form the basis for the complex dynamics. Common
practice in evolutionary game theory takes very different as-
sumptions: The populations consists of identical players
�since everyone can buy or sell� who do not possess any
memory. Only the last interaction determines the future.
From this perspective, the minority games would reduce to a
special case of a 2�2 game with a mixed evolutionary
stable strategy. However, the key features of the minority

game are lost in this way. Thus, there is no simple mapping
of the minority game to standard evolutionary game dynam-
ics.

A different way to analyze learning rules or update
mechanisms has been discussed in �53�. There, a population
of buyers and sellers interact and the performance of the
different learning mechanisms are analyzed. Our results
highlight the importance of the detailed consideration of
such microscopic update mechanisms or learning schemes,
as they can significantly alter the macroscopic dynamics of a
system.
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